skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mangiamele, Lisa A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many animals communicate by performing elaborate displays that are incredibly extravagant and wildly bizarre. So, how do these displays evolve? One idea is that innate sensory biases arbitrarily favour the emergence of certain display traits over others, leading to the design of an unusual display. Here, we study how physiological factors associated with signal production influence this process, a topic that has received almost no attention. We focus on a tropical frog, whose males compete for access to females by performing an elaborate waving display. Our results show that sex hormones like testosterone regulate specific display gestures that exploit a highly conserved perceptual system, evolved originally to detect ‘dangerous' stimuli in the environment. Accordingly, testosterone makes certain gestures likely to appear more perilous to rivals during combat. This suggests that hormone action can interact with effects of sensory bias to create an evolutionary optimum that guides how display exaggeration unfolds. 
    more » « less
  2. null (Ed.)
    Multimodal communication is common in the animal kingdom. It occurs when animals display by stimulating two or more receiver sensory systems, and often arises when selection favors multiple ways to send messages to conspecifics. Mechanisms of multimodal display behavior are poorly understood, particularly with respect to how animals coordinate the production of different signals. One important question is whether all components in a multimodal display share an underlying physiological basis, or whether different components are regulated independently. We investigated the influence of androgen receptors (ARs) on the production of both visual and vocal signal components in the multimodal display repertoire of the Bornean rock frog (Staurois parvus). To assess the role of AR in signal production, we treated reproductively active adult males with the antiandrogen flutamide (FLUT) and measured the performance of each component signal in the multimodal display. Our results show that blocking AR inhibited the production of multiple visual signals, including a conspicuous visual signal known as the “foot flag,” which is produced by rotating the hind limb above the body. However, FLUT treatment caused no measurable change in vocal signaling behavior, or in the frequency or fine temporal properties of males’ calls. Our study, therefore, suggests that activation of AR is not a physiological prerequisite to the coordination of multiple signals, in that it either does not regulate all signaling behaviors in a male’s display repertoire or it does so only in a context-dependent manner. 
    more » « less